
Improving the Developer Experience with a Low-Code Process
Modelling Language

Henrique Henriques, Hugo Lourenço
OutSystems

Linda-a-Velha, Portugal
(henrique.henriques|hugo.lourenco)@outsystems.com

Vasco Amaral, Miguel Goulão
NOVA LINCS, DI, FCT/UNL

Lisboa, Portugal
(vma|mgoul)@fct.unl.pt

ABSTRACT
Context: The OutSystems Platform is a development environment
composed of several DSLs, used to specify, quickly build and vali-
date web and mobile applications. The DSLs allow users to model
different perspectives such as interfaces and data models, define
custom business logic and construct process models. Problem: The
DSL for process modelling (Business Process Technology (BPT)),
has a low adoption rate and is perceived as having usability prob-
lems hampering its adoption. This is problematic given the language
maintenance costs.Method: We used a combination of interviews,
a critical review of BPT using the “Physics of Notation” and em-
pirical evaluations of BPT using the System Usability Scale (SUS)
and the NASA Task Load indeX (TLX), to develop a new version of
BPT, taking these inputs and Outsystems’ engineers culture into
account. Results: Evaluations conducted with 25 professional soft-
ware engineers showed an increase of the semantic transparency
on the new version, from 31% to 69%, an increase in the correct-
ness of responses, from 51% to 89%, an increase in the SUS score,
from 42.25 to 64.78, and a decrease of the TLX score, from 36.50
to 20.78. These differences were statistically significant. Conclu-
sions: These results suggest the new version of BPT significantly
improved the developer experience of the previous version. The
end users background with OutSystems had a relevant impact on
the final concrete syntax choices and achieved usability indicators.

CCS CONCEPTS
• Software and its engineering→ Software usability;Domain
specific languages; Visual languages;

KEYWORDS
Low-Code Languages, Developer Experience
ACM Reference Format:
Henrique Henriques, Hugo Lourenço and Vasco Amaral, Miguel Goulão.
2018. Improving the Developer Experience with a Low-Code Process Mod-
elling Language. In ACM/IEEE 21th International Conference on Model Driven
Engineering Languages and Systems (MODELS ’18), October 14–19, 2018,
Copenhagen, Denmark. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3239372.3239387

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODELS ’18, October 14–19, 2018, Copenhagen, Denmark
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4949-9/18/10. . . $15.00
https://doi.org/10.1145/3239372.3239387

1 INTRODUCTION
Modelling Languages are increasingly adopted in industry. Improv-
ing the developer experience with those languages has a potential
economic impact both by facilitating their adoption and by mak-
ing developers more productive. Moody’s seminal work on the
“Physics of Notations” [23] has raised awareness to the importance
of effective visual notations. However, there is scarce evidence and
examples of industry-strength studies highlighting these benefits.

The OutSystems Platform is used to create web and mobile appli-
cations with a set of integrated Domain-Specific Languages (DSLs).
These DSLs are visual modelling languages that allow develop-
ing applications at a high abstraction level, hiding low-level details
about creating and publishing those applications. This allows signif-
icantly faster development times and a higher quality result when
compared to general-purpose languages [29]. The platform is used
both internally and by external organizations, free-lancers, and
even end-users, which develop their projects using this technology.

OutSystems includes a DSL called Business Process Technology
(BPT) for process modelling. BPT is used by developers with pro-
gramming and process modelling knowledge and as a communi-
cation medium with business managers. Through interviews with
OutSystems developers and data collected from recent projects, we
found that BPT was not having the expected adoption rate (less tar-
geted languages within OutSystems are used for process modelling)
and was being used for purposes other than process modelling.
Maintaining BPT has an associated cost. It was important to iden-
tify possible flaws in the language and make any necessary changes
to raise its value for the company and its customers.

We used a combination of techniques for developing an improved
version of BPT, including a) an analysis based on the “Physics of
Notations” [23], b) interviews with professional BPT users, c) a
“crowdsourced” approach to the production of an improved version
of BPT’s concrete syntax and d) its evaluation in terms of semantic
transparency [2], along with e) a usability evaluation using the
System Usability Scale (SUS) [1] and f) a NASA Task Load indeX
(NASA TLX) [8] assessment of the effort involved in using BPT.

This combined methods approach has allowed for the production
and implementation of a significantly improved version of BPT, in
terms of its usability. The process is abstract enough to be applied
to other visual modelling languages. The whole evaluation and im-
provement process of BPT was used as a testbed by OutSystems for
the combination of these techniques to support language evolution.

We introduce BPT (section 2), the language evaluation process
for BPT (section 3), and the new BPT proposal and the usability
experiment (section 4). On section 5 we discuss results and impli-
cations for practice. We then present related work (section 6) and
summarise the main conclusions (section 7).

https://doi.org/10.1145/3239372.3239387
https://doi.org/10.1145/3239372.3239387
https://doi.org/10.1145/3239372.3239387

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark H. Henriques et al.

2 BUSINESS PROCESS TECHNOLOGY
2.1 OutSystems Platform
The architecture [16] is divided into three main components: Service
Studio, Platform Server and Application Server (Figure 1).

Figure 1: OutSystems Platform architecture [7].

Service Studio is the development environment for all the DSLs
supported by OutSystems. When the developer publishes an appli-
cation, Service Studio saves a document with the application’s model
and sends it to the Platform Server. The IDE is divided into four
main views: process modelling, interface flows, custom logic/APIs
access and database modelling.

Platform Server synthesises code given a particular stack (e.g., for
a Windows Server [21] using SQL Server [20] this will be ASP.Net
[18] and SQL code). The compiled application is then deployed to
the Application Server. The Platform Server also includes a Scheduler
Service. This service manages the execution of steps within process
models developed using BPT and also of scheduled jobs resulting
from Timers.

Application Server runs on top of Oracle WebLogic [26], JBOSS
[10] or IIS [19]. The server then stores and runs the developed
applicationwhich is connected to a relational databasemanagement
system, which can be SQL Server, Oracle [28] or MySQL [27]. The
SQL code generated by the Platform Server is specific to the selected
database management system.

2.2 Current BPT concrete syntax
BPT users design, execute and manage processes which are fully
integrated with applications built with the OutSystems Platform.
Figure 2 summarises BPT’s concrete syntax.

Figure 2: BPT development environment.

Start starts the process flow. There can only be one Start in a
process. An Alternative flow is used to start a new parallel flow in
the process. It has an attribute called Launch On where the user
defines what condition triggers the flow (e.g. a data-base event or
an API call). End and Terminate share the same symbol, to either
terminate the whole process or the particular flow it is connected
to, respectively. Subprocess calls another process.Wait for user (also
known as Human Activity) is linked to a pre-developed Web Screen
(an Interface designed using another part of the OutSystems Plat-
form) and pauses the flow waiting for the user to trigger an action
on that Web Screen. An Automatic Activity contains an action flow
which is defined in a separate window. The action flow can include
Custom Logic, event broadcasts via the database (Broadcast DB), or
API calls (API Event).Wait pauses the process flow. The flow can
then be resumed by a specific API call (Wait for API), a database
event (Wait for DB) or an associated timeout (Wait for Timeout).
Send Email is associated to a pre-developed email screen (which
can contain dynamic data values). When the flow reaches this node
it sends the email to the email addresses entered in the node’s at-
tribute. The Decision node has n outgoing flows and the chosen
flow is decided based on custom logic defined in a separate window.
Finally, although the language semantically supports parallelism,
with a similar semantics of activity diagrams, there are no symbols
for the concepts of Fork and Join.

3 BPT EVALUATION

Figure 3: BPT evaluation process.

As depicted in Figure 3, the process starts by evaluating the
existing BPT, in order to identify improvement opportunities. The
evaluation consists of an analysis of usage data from Outsystem’s
Platform logs, interviews with BPT users, an analysis of BPT using
the “Physics of Notations”, and a usability analysis.

3.1 Analysis of usage data from the
OutSystem’s platform

Procedure We analysed a repository of real application models
(i.e. deployed in customers) and collected metrics concerning the
percentage of those that actually use BPT, the percentage of BPT
models that use process metadata (a bad smell in BPT, due to severe

Improving the Dev. Experience with Process Modelling Language MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

time performance implications), and the average number of nodes
of BPT models.
Results From a repository of 5145 OutSystems application models
available in the OutSystems platform, only 179 (around 3%) used
BPT. There were a total of 353 BPT models, of which 120 used
process metadata. The 353 BPT models had an average of 18.7
nodes per BPT.

3.2 Interviews with BPT users
Procedure We interviewed 6 developers (2 Senior and 4 Lead En-
gineers) with at least 3 years of experience working with BPT
developing applications for OutSystems clients. The interviews fol-
lowed the Design Thinking philosophy of empathy interviews [30],
where the interviewee tells a story, fromwhich one can collect more
insights than those which would normally be available through
answers to direct questions. The goal is to get to the root of prob-
lems by applying the five whys technique [3]. This is an iterative
interrogative technique to explore cause-and-effect relationships
underlying a particular problem by repeatedly asking why (at least
five times). The interviews covered the following topics:

• The context BPT is being used in. Although BPT is a
DSL it is possible that BPT is being used out of its domain.
Usability issues can occur when a language is used in a
domain that it was not designed for.

• Why BPT was chosen. This brings up the strengths of
BPT and the features that the interviewee likes, and may
help to start a conversation about things that can be further
improved in said features.

• What features are less used and why. Features that are
not getting much use may need to be changed, removed
or better explained with training, documentation, etc. It is
possible that the users do not use a certain feature because
they do not know enough about it or its potential usefulness.

• What features are missing. With the daily usage of the
language does the expert feel like there is somethingmissing?
Are there use-cases within the language’s domain that can
not be answered?

Results The following insights about BPT were extracted from the
interviews:

• Development teams liked using BPT but were “scared” to do
so due to low-level nuances. They preferred to fall back to
what they were used to (Timers).

• Parallelism was hard to model and so was identifying syn-
chronization bugs.

• New team members could not start working with BPT with-
out specialised training.

• Some clients explicitly requested the use of BPT.
• Maintaining a project with BPT was difficult and costly.
• BPT was often used outside of its domain. While BPT was
designed to be a process modelling language it was also
being used for event handling. These event handlers are
very small processes (normally around three or four nodes).
They start automatically in response to an event (like an API
call), perform a small automatic action and then end. The
problem is that the language runtime was not designed for
this behaviour and, as such, does not perform well.

3.3 BPT analysis using the “Physics of
Notations”

ProcedureWe conducted a critical analysis of BPT, following the
Physics of Notations (PoN) principles. We checked if BPT complies
with each of the PoN nine principles, to determine the extent to
which BPT’s concrete syntax adheres to them and, in that process,
identify concrete syntax improvement opportunities that would
mitigate the identified non-conformities to those principles.
Results In this section, we outline the main conclusions of our
analysis of the BPT concrete syntax using the PoN as a reference
framework. We do this by analysing each of the PoN 9 principles.

Semiotic clarity: There should be a one-to-one relationship be-
tween semantic constructs and concrete syntax. We found cases of
symbol deficit: while there is semantic support for using Forks and
Joins to model parallelism, there were no special symbols for these.
This symbol deficit may explain why our interviewees reported
difficulties with identifying synchronization bugs and modelling
parallelism (see section 3.2). We also found cases of symbol overload:
the Timeout symbol is used for three types of waits (all with differ-
ent behaviours); the End symbol is the same used for Terminate;
there are several ways of triggering a process but the Start sym-
bol does not reflect this. There are also some issues with platform
consistency which may be regarded as a symbol overload problem
when considering the other OutSystems DSLs. The Custom logic
and Broadcast DB or API event constructs are represented by an
orange ball in other OutSystems DSLs.

Perceptual discriminability: Symbols with higher visual dis-
tance are easier to distinguish. No symbol had a visual distance
greater than 2 visual variables. Colour and shape were the prevalent
variables present in all the symbols. BPT uses textual differentiation,
with all but the End symbol having a label defined by the developer.
The End symbol has a label defining its behaviour: End or Terminate.
There were no mechanisms for redundant coding.

Semantic transparency: Semantic transparency is the extent
to which the meaning of a symbol can be inferred from its ap-
pearance. We made two complementary assessments of semantic
transparency: a critical analysis of the concrete syntax, reported
here, and an experimental evaluation, comparing the semantic trans-
parency of the original BPT with the one of the proposed improved
syntax of BPT (section 4). In our critical analysis, we detected three
visually opaque symbols. Call Subprocess and Automatic Activity
have a shape that is not related to the corresponding notions. The
Conditional start symbol is represented with a lightning symbol
which is not related to the notion of starting. However, this is miti-
gated by both Start and Conditional start sharing the same colour.

Complexity management: BPT has two mechanisms for deal-
ing with complexity: the Call subprocess construct and the Auto-
matic Activity. The subprocess construct calls another process and
only proceeds after all flows of the subprocess finish. The automatic
activity encapsulates logic but does not allow it to be reused. The
Subprocess construct is a good mechanism for managing complexity.
It promotes reusable code and allows for several hierarchical levels.
The Automatic Activity could be improved by allowing re-usability.

Cognitive Integration: A language should include some ex-
plicit mechanisms to support the integration of information from

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark H. Henriques et al.

different diagrams. Two relevant mechanisms are Conceptual inte-
gration and Perceptual integration. Conceptual integration provides
mechanisms (e.g. a summary diagram) to help the reader assemble
information from separate diagrams into a coherent mental rep-
resentation of the system. However, BPT does not support such
mechanisms. Perceptual integration offers cues to simplify the nav-
igation between diagrams. BPT supports orientation and destination
recognition through the labelling of diagrams, but no explicit sup-
port for route choice and monitoring.

Visual expressiveness: The number of visual variables used
in a notation defines its visual expressiveness. BPT has a visual
expressiveness of 2. It only uses shape and colour as information
carrying variables. Horizontal and vertical position, size, brightness,
texture, and orientation are free variables in BPT.

Dual coding: Textual encoding should supplement, rather than
substitute graphics. However, BPT uses text as a way to distinguish
symbols (e.g. the Custom logic and the Broadcast DB or API event
are indistinguishable without textual labels). On a more positive
note, BPT supports a text annotation construct, so that developers
can add optional text to the process.

Graphic economy: The number of symbols in the language
should be manageable. BPT has 9 different symbols, which is over
the recommended upper limit of 6 [23]. This shortcoming is mit-
igated by the fact that BPT is normally used within Service Stu-
dio, where a toolbar also serves, in practice, as a key for the BPT
diagrams. This mitigates the potential difficulty in remembering
what each symbol means, which is in general more challenging for
novices when understanding software engineering diagrams [25].

Cognitive Fit: The cognitive fitness principle suggests that dif-
ferent representations of information are suitable for different tasks,
audiences, and media. As is common in most Software Engineer-
ing languages, BPT uses a single visual representation for all pur-
poses and audiences. However, this is not perceived as a significant
shortcoming, as BPT’s notation is relatively small and simple to
understand. Having separate dialects for experts and novices seems
unlikely to bring significant benefits. Further research would be
required to assess the potential impact of specific tasks on the us-
ability of BPT. The notation is not easy to sketch since the language
was designed to be used only within Service Studio.

4 NEW BPT PROPOSAL
4.1 Research questions
During the analysis of the current version of BPT, we concluded that
one of the areas that could be improved was its concrete syntax.
Our goal was to create a new set of symbols that had a one to
one relation between symbols and semantic constructs, and with a
high level of semantic transparency. This was done by applying a
modified method adapted from the work by Caire et al. [2]. That
said, the results of the Physics of Notations analysis should not be
ignored and other factors (such as consistency) also needed to be
considered. Three research questions guided our quasi-experiments
on the semantic transparency of BPT:

• RQ1. Is the original BPT concrete syntax semantically opaque?
• RQ2. Can participants unfamiliar with BPT design more
semantically transparent symbols for BPT than the original?

• RQ3.Which concrete syntax (original, stereotype, prototype,
proposed) is more semantically transparent?

After conducting the semantic transparency evaluation of differ-
ent versions of BPT, we further compared the usability and cognitive
effort of the original BPT with the BPT version proposed in this
paper. This lead to three additional research questions:

• RQ4. Which concrete syntax (original, proposed) leads to
a better understandability of BPT models in the context of
interpretation tasks?

• RQ5. Which concrete syntax (original, proposed) leads to
a better understandability of BPT models, as perceived by
practitioners after performing model interpretation tasks?

• RQ6.Which concrete syntax (original, proposed) leads to a
lower cognitive effort, as perceived by practitioners while
performing BPT model interpretation tasks?

4.2 Research design
The research design consisted of 6 related empirical studies, where
the results of the earlier studies provide inputs to the later studies

We conducted five interrelated studies. Three were experiments
involving novices. The participants used in each of the experiments
were exclusive to that experiment, so that they would not be influ-
enced by their own participation in other experiments. Additional
material on all these empirical studies can be found in this paper’s
companion site [11].

a) symbolization experiment: novices were asked to draw
a set of symbols that they thought best represented the lan-
guage constructs;

b) Stereotyping analysis: a set of symbols was built based on
the most common symbols drawn by the novices;

c) Prototyping experiment: a different group of novices was
asked to identify the best symbol for each construct - the
most frequently selected symbol for each construct was chosen;

d) Proposed symbol set: a set of symbols was built, taking
into account the results from the stereotyping and proto-
typing experiments, the interviews with users and the eye-
tracking usability tests;

e) Semantic transparency experiment: a third group of no-
vices were asked to infer the meaning of each symbol. This
was done for the original, the stereotype, the prototype and
the proposed symbol sets. This last empirical study is the
one where we finally evaluated the three research questions
presented in section 4.1.

f) Usability and cognitive effort comparison: The original
and the proposed BPT were compared in terms of their us-
ability and of the cognitive effort associated in using them.

4.3 symbolization experiment
i) Goal: Semantic transparency is achieved when users can infer
the meaning of a symbol. A possible way to achieve an acceptable
level of transparency is to have members of the target audience
generate a set of symbols for the language. This was done applying
the sign production technique [12], where novices were asked to
draw symbols that best represent each of BPT’s semantic constructs.
ii) Participants andmaterials: The 24 participants were software
developers (half of them were students, the other half professionals)

Improving the Dev. Experience with Process Modelling Language MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

between 18 and 32 years old. None of them had prior experience
with BPT. The sign production questionnaire contains:

• a cover page with information about the study, a disclaimer
and an out of context example to exemplify the expected
answer format;

• fifteen questions (one for each of the semantic constructs)
and respective answer box;

• a final page with a series of screening and demographic
questions.

iii) Procedure: The participants received a printed questionnaire
and were asked to answer them. They took from 30 to 40 minutes
to complete the questionnaire. To process the questionnaires, we
developed an application that receives as an input the questionnaire
in digital format, cuts the answers into separate images, saves and
indexes them. This allows viewing all the answers of a specific
questionnaire or viewing all the answers for one specific construct.
iv) Results: The outcome of this activity was a dataset of 24x15
symbol proposals for an improved BPT concrete syntax.

4.4 Stereotyping analysis
i) Goal: The stereotyping analysis builds on the assumption that,
if several participants think of the same visual metaphor when
proposing a representation for a given construct, this metaphor
is likely to be easily recognizable by others. The goal of this task
was to build a stereotype concrete syntax based on the most drawn
metaphors for each construct.
ii) Materials: The input for this analysis was the symbol set col-
lected from the questionnaires produced in the symbolization ex-
periment, described in section 4.3.
iii) Procedure: The analysis of the drawings generated by the sign
production technique was done using the judges’ ranking method
[14]. The symbols were first classified into categories based on their
conceptual similarity. Then, we chose the symbol that was most
representative of the most frequent category.

For example, the symbols for the semantic construct Start process
were divided into five categories: media play button, a text, a power
button, a traffic light and an on switch. Of the total symbols, 11 were
placed in themedia play button category, 6 in text, 2 in power button,
1 in traffic light and 2 in on switch. The remaining symbols were not
categorised because they did not make sense or were unreadable.
So, for the Start process construct the chosen symbol was the symbol
that best-represented media play button. This process was repeated
for each semantic construct.
iv) Results: The stereotyping analysis resulted in a set of 15 sym-
bols, one for each construct (Figure 4). None of the symbols had an
absolute majority. The large variety of symbols, and in some cases
the lack of answer, illustrates the difficulty in creating a concrete
representation for the constructs.
4.5 Prototyping experiment
i) Goal: A potential shortcoming of the stereotype symbol set is
that the most drawn symbols are not necessarily those that better
convey BPT’s constructs. A visual metaphor may be a mnemonic
of a construct’s name but not a good representation of the concept
itself [2, 14]. As such, we conducted a prototyping experiment to
identify which icons were better metaphors for the concepts, rather
than for their names. ii) Participants and materials: We had a

Figure 4: Set of stereotype symbols.

mixture of students and professionals, all software developers with-
out previous knowledge of BPT, participating in the prototyping
experiment. Most of the 16 participants were recruited through a
digital third-party platform for usability tests called UsabilityHub
[34].

We created a questionnaire where each question had a descrip-
tion of a semantic construct and a set of possible symbols for that
construct. The possible choices for each construct were a symbol
from each category previously defined in 4.4. There were two ver-
sions of the questionnaire: one on paper (which can be found at the
companion site) and another made available through UsabilityHub.
iii) Procedure: Participants were asked to choose the best sym-
bol to represent the description of the semantic construct. Most
of the answers were collected through UsabilityHub. The data ex-
ported from that platform was then complemented with the data
collected from the few participants using the paper version of the
questionnaire.
iv) Results: The set of most frequently chosen symbols for each
construct is our prototype symbol set (Figure 5). Again none of the
symbols were selected by an absolute majority.While a few symbols
matched the Stereotyping analysis, others were radically different.
The Subprocess construct is especially noteworthy since it has a
dynamic effect: it is a real-time representation of the process being
called which expands when the user mouse hovers it.

Figure 5: Set of prototype symbols.

4.6 Proposed BPT
i) Goal: A shortcoming of the stereotyping and prototyping experi-
ments is that each symbol is generated independently. This neglects
the development environment and the need for consistency with
the rest of the OutSystems platform. Our goal was to propose an al-
ternative BPT that would leverage this consistency concern, adding

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark H. Henriques et al.

it to the knowledge gathered with the symbolization, stereotype
and prototype experiments.
ii) Materials:We used as inputs the sets of stereotype and proto-
type symbols, as well as the feedback collected through interviews
with OutSystems developers (already described in 3.2) and our
knowledge of the rest of the OutSystems DSLs.
iii) Procedure: We proposed a new concrete syntax that takes
into account consistency with the other OutSystems DSLs, while
remaining as close as possible to the set of prototype symbols, as we
expected these to be the most semantically transparent alternatives.
However, while some changes were direct (simply changing the
icon), others required changes to how the flows work and therefore
go beyond the concrete syntax. This section goes over each of
the changes made to BPT and how they were implemented. Note
that, in the present stage, all these changes were developed as a
prototype with the goal of testing the proposed concrete syntax.
Further development is still necessary to make them part of the
actual OutSystems platform.

Adding new elements, updating symbols and syntactic ru-
les. The original BPT set of symbols was comprised of nine symbols
while the new one has a total of fifteen different symbols. So, in
order not to increase the language’s complexity by adding six new
symbols to the toolbar, certain symbols were placed in groups and
the symbol changes based on attribute values. As such, only two
new symbols had to be added to the toolbar: Fork and Join.

The BPT language is defined by a meta-model which contains
all the syntactical rules and constraints. This is consumed by a
compiler which then generates a series of partial classes which can
then be completed with the language’s semantics. To add the new
elements, nodes were created in the meta-model but their semantics
were not touched at this stage given that the changes were just to
prototype the syntax.

To view what causes a process to start, one has to view the
properties of the process. During the usability tests, 100% of the
participants first looked for that information on the Start button. As
such, the property was replicated to the Start button and any change
made on button is updated in the process’s property. This ensures
there will not be any conflicts even though there is redundancy.

Some symbols have the same behaviour as the original ones. The
only change made was the replacement of the original icon with
the new one. This was the case for the Decision and Wait nodes.

As the language now has explicit symbols for parallelism, the
syntactical rules for outgoing arrows had to be updated. Originally
any node could have N outgoing and incoming arrows. We changed
this to ensure that only the Decision (number of outgoing arrows is
based on the condition) and Fork can have N outgoing arrows.

Symbol groups.When adequate, we grouped symbols together
in order to reduce complexity. For each of these groups, we chose a
symbol to represent the group. This symbol is then decorated with
an overlay based on properties. We created the following groups:

• Waits. This group includes the Wait for API call, Wait for
DB event and the Wait for timeout constructs. The symbol
used to represent the group is theWait for API call symbol
since it is the most generic of the three.

• End and Terminate. This group contains the End and Ter-
minate symbols. They both have similar functionality but

the End is most commonly used, as such it was chosen to
represent the group.

• Start. The launch of a process can be done in different ways.
The default symbol for Start is the one presented in 8. How-
ever, if the process is launched via a DB event then the
symbol is updated with a small overlay.

• Conditional start. The proposed Conditional Start symbol
has an overlay representative of a DB event. But, the condi-
tional start can also be triggered by an API call. As such, the
default symbol used does not have an overlay but if the user
chooses a DB event as a trigger then the overlay is applied.

Using Actions in BPT. An Action is a piece of reusable code.
There are different types of Actions: created by users which can
include any type of custom logic, a set of system actions provided
by Service Studio, entity actions that are used to manipulate the
database, and API actions which interact with triggers and APIs.

Originally in BPT, all action calls and logic had to be encapsulated
in an Automatic Activity (Figure 6). These were not reusable and
at times created unnecessary complexity. Changes had to be made
to ServiceStudio’s syntax to allow Actions to be used in the BPT
flow. With this, Actions have now replaced the Automatic Activity
(Figure 7) since they provide generalization and re-usability while
not creating unnecessary complexity.

Figure 6: Automatic activity (original BPT)

Figure 7: Actions (new BPT)

v) Results: Figure 8 presents the proposed concrete syntax for BPT.
The End and Terminate remain green (even though that could

be considered semantically perverse) because End is green on the
rest of the platform. Changing it in the rest of the platform would
have a large impact on established users so it was decided that it
would be best to keep the green in these elements.

The most important changes when compared to the prototype
symbol set concern the database related symbols (Wait for DB event
and Broadcast DB or API event), theWait for timeout andWait for
API, the Fork, the Join and the Alternative flow:

Improving the Dev. Experience with Process Modelling Language MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Figure 8: Set of proposed symbols.

• The database related symbols: Both the stereotype and
prototype symbol sets have use three cylinders to represent
any activity related to a database. This is a common represen-
tation for databases. However, Service Studio uses a different
representation (a blue table). As such, all representations
related to data were changed to maintain consistency.

• Wait for timeout or API: These were switched because
waiting for an API call is an unconditional pause. A timeout
is a condition. In order to be consistent with the database
wait (which is also conditional), it was decided it would be
best have an overlay on the conditions.

• Fork and Join: Arrows in ServiceStudio only specify flows
and have no semantic definition. As such, the fork and join
in the stereotype symbol would be a drastic change to the
common behaviour of arrows. The metaphor from the proto-
type symbol set was not used because it makes it harder to
differentiate forks from joins. The symbols proposed came
in second on the prototyping experiment.

• Alternative flow: the symbols in both stereotype and pro-
totype were too similar to the Start symbol. We decided to
maintain the current symbol and add an overlay depending
on what triggers the alternative flow.

4.7 Semantic transparency experiment
i) Goal: The goal of this study was to evaluate the semantic
transparency of the 4 alternative symbol sets for BPT: origi-
nal BPT (Figure 2), stereotype BPT (Figure 4), prototype BPT (Figure
5), and proposed BPT (Figure 8). We conducted a blind interpreta-
tion study where participants had to infer the construct associated
with each symbol. Comprehension tests [36] are commonly used
to measure the symbol’s transparency and is recommended by the
International Organization for Standardization (ISO) for testing the
comprehensibility of graphical symbols [13].
ii) Participants and materials: The participants were 20 MSc
students from Universidade Nova de Lisboa (UNL) from the Infor-
matics course. None of them had previous knowledge of BPT. We
created a survey for each of the 4 different sets of symbols. Each
survey had a question for each of the symbols in each set, followed
by a list with all of the language’s semantic constructs. Participants
were able to select one or more constructs that, in their opinion,
were best represented by the corresponding symbol. The surveys
were created in digital form. We developed a web application that
asked the participant to input their (academic) email, and prevented
answers from repeated emails. The application randomly redirected
the participant to one of the four surveys, while keeping a balanced

distribution of respondents among alternative notations (in prac-
tice, for every 4 participants, one would be randomly assigned to
each of the alternative notations). This ensured that a tester could
not answer more than one survey, to prevent bias. In the end, we
had 5 respondents per notation.
iii) Procedure: Each participants received a link to one of the 4
alternative questionnaires and filled it in. There was no fixed time
limit for this task, but the estimated time for completion was “no
longer than 15 minutes”.
iv) Hypotheses, parameters and variables: The independent
variable was the concrete syntax (i.e. original, stereotype, prototype
or proposed BPT). The dependent variable was the symbol’s hit
rate, used as an indicator of symbols comprehension (a proxy for
semantic transparency). We hypothesized that the hit rate for the
Original BPT would be outperformed by all the alternatives, that
the stereotype would be outperformed by the prototype, which, in
turn, would be outperformed by the proposed BPT :
OriдinalBPT < StereotypeBPT < PrototypeBPT < ProposedBPT
v) Results: The results in Table 2 show that, on average, the Pro-
totype concrete syntax is the most semantically transparent set of
symbols, with 79% of hit ratio. The proposed BPT concrete syntax
comes next, with around 69% of hit ratio. Both are above the ISO
threshold for comprehensibility (67%) [13]. However, only the Pro-
totype BPT has the mode above that threshold (Figure 9). Although
with a similar median value, the Stereotype BPT had a lower mean
hit rate, when compared to the Prototype and the Proposed BPT.
The Original BPT obtained the lowest mean hit rate. In spite of not
being the notation with the best hit rate, the proposed BPT was
selected in the end for further analysis, as it is the one that best fits
into the remaining OutSystems DSLs landscape. As such further
comparisons will focus on the original BPT and the proposed BPT.

Table 1: Hit rate
Construct Original Stereotype Prototype Proposed

Wait for timeout 1.00 .60 1.00 .80
Run subprocess .40 .20 .60 .20
Start process .40 1.00 .80 .60
Send email .80 1.00 1.00 1.00
Wait for DB event .20 1.00 1.00 .80
End process .40 .20 1.00 .60
Decision .40 .0 .60 .60
Custom logic .0 .0 .60 .40
Alternative flow .0 .40 .40 .60
Fork .0 1.00 .40 1.00
Join .0 .80 .40 1.00
Terminate .20 1.00 1.00 .80
Wait for user .60 .60 1.00 .80
Wait for API call .20 .60 1.00 .60
Broadcast DB event .0 .80 1.00 .60

Mean Hit Rate .31 .61 .79 .69
Standard Deviation .31 .37 .26 .23

4.8 Usability and cognitive effort comparison
i) Goal: Even if the language has a high transparency rating, as-
sessed here indirectly through the hit rate, it is important to conduct
more usability experiments. The evaluations described in the previ-
ous sections evaluated symbols individually. This does not ensure a
high language usability rating. We followed the method described
in section 4.8 to further assess the proposed BPT in terms of its
usability and of the cognitive effort required to use it, contrasting
it with the original BPT.

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark H. Henriques et al.

Concrete Syntax

Proposed BPTPrototype BPTStereotype BPTOriginal BPT

H
it

 R
at

e

1.00

0.80

0.60

0.40

0.20

0.00

Run subprocess

ISO Threshold

Page 1

Figure 9: Hit Rate

ii) Participants andmaterials: A total of 25 subjects participated
in this evaluation. They were professional software developers aged
between 23 and 40 years old and experienced with the OutSystems
platform. None of them had previous experience with BPT.

We created two versions of the evaluation material, including
three BPT models with varying levels of complexity that covered
all the BPT language constructs. Semantically equivalent models
were represented with the original BPT, in the first version, and
the proposed BPT, in the second version. For each of those models,
there was a set of questions, presented on a side window with
a Google forms questionnaire. We asked participants to answer
those questions, to assess their level of understanding about each
model. The questions were objective (e.g. “What elements of the
language interact with the database?”) rather than subjective (e.g.
“What do you think of X?”), so that we could objectively assess
whether the answer was correct or not. Overall, the questionnaires
contained 9 questions. We also used a Simple Usability Scale (SUS)
[1] questionnaire and a NASA TLX questionnaire [8] to assess the
usability and cognitive effort required to answer the interpretation
questions, respectively, as perceived by the participants.

The setup included a single-screen computer, equipped with
an eye tracker, which was calibrated for each participant, at the
beginning of the evaluation session. The OutSystems development
environment was open, with a solution built with BPT.
iii) Procedure: We conducted one-on-one experiments with de-
velopers. 16 participants answered questions about models built
with the original BPT. Another group of 9 participants answered
questions about the same models built with the proposed BPT. Dur-
ing the evaluation session, we recorded the contents of the screen,
the eye tracking data of the participant while performing the tasks,
and the voice of the participant. We encouraged the participant to
follow a “think aloud” protocol so that we would obtain richer data
for analysis. After answering this questionnaire, the participant also
answered a System Usability Scale (SUS) [1] and a NASA TLX [9]
questionnaire. Finally, there was a short open discussion where the
participant would talk about the issues he had with the language
and, in most cases, suggested ideas for mitigating those issues.

iv) Hypotheses, parameters, and variables: The independent
variable is the concrete syntax (Original BPT, Proposed BPT). The
dependent variables are the answer correction rate, the SUS score,
and theNASATLX score. For these three variables, we hypothesized
that the Propose BPT would outperform the Original BPT in terms
of understanding tasks with BPT models, the perceived usability of
BPT and the perceived cognitive effort spent while using it.
v) Results: Table 2 presents the success rate for each question,
for Original BPT and Proposed BPT. The right column presents a
short comment concerning how the change of the concrete syntax
affected the corresponding answer, as perceived from the observa-
tion of the participation of our subjects in the usability experiment
(including the eye tracking data) and from their own feedback.

Table 3 contains descriptive statistics for the SUS and TLX data
collected while performing the usability tests. The table is grouped
by score type and each type contains statistics for the original BPT
language (BPT) and the new BPT language (New BPT).

We used the Welch’s t-test for testing the differences in the
correctness of answers, SUS and TLX scores between the Original
BPT and the Proposed BPT. The Welch t-test is robust to different
sample sizes even in the presence of deviations from normality [15].
Table 4 contains: the means for the average correction of answers,
the SUS and the TLX scores; the difference between the original
and new BPT means; the 95% confidence interval of the difference;
t, df and p-values. We hypothesised that the proposed version of
BPT would lead to more correct interpretations of models, have a
higher usability rating when compared to the original version and
require a lower cognitive effort to be understood in its usage.

Participants using the proposed BPT provided more correct an-
swers, with a statistically significant improvement of 0.375. This
supports the hypothesis that the proposed BPT is easier to interpret
than the original BPT. Participants using the proposed BPT gave it a
higher score, with a statistically significant improvement of 22.53,
supporting the hypothesis that the proposed BPT leads to improved
usability. Finally, participants using the proposed BPT reported a sta-
tistically significant lower NASA TLX score, with less 15.72 points,
supporting the hypothesis that the proposed BPT requires a lower
cognitive effort to be understood. Figures 10, 11 and 12 present the
distributions of correctness, SUS and TLX, respectively.

5 DISCUSSION
5.1 Evaluation of results
Overall, the proposed BPT significantly outperforms the original
BPT in terms of its actual and perceived usability and, therefore,
has the potential for improving the developer experience with it.

RQ1. Is the original BPT semantically opaque? Yes. The
original BPT has a mean hit rate well below the ISO standards
requirements for symbol recognisability. This is very common in
software design languages [23]. Along with the other shortcomings
of the original BPT, identified through interviews with practitioners,
the PoN evaluation and the scarce actual usage of BPT in projects,
this observation suggests that improving BPT has the potential to
improve developer and other stakeholders’ experience by making
BPT symbols easier to recognize and remember.

Improving the Dev. Experience with Process Modelling Language MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Table 2: Results of usability tests
Correct Answer Rate (%)

Question Original Proposed Proposed BPT Comments

1.What causes the process to start? 6.25 100 Participants had no problem to find the information since it is now present on the Start
button (which was the first place to be checked).

2.Which nodes require human interaction? 100 100 Same result as the Original BPT test. This was expected since the symbol was not changed.
3.What nodes send e-mails? 100 100 This is the same case as the question above.
4. Can this process fail? 62.5 100 Testers had a much easier time understanding the difference between End and Terminate.
5.Why can this process fail? 31.25 66.66 There is still some confusion about the scope of Terminate. It is not clear if the Terminate

in the sub-process also kills the parent.
6.What node finishes a process flow? 31.25 100 With different symbols for each construct testers no longer confuse the two.
7.What node finishes all process flows? 31.25 100 Same as the above.
8.Who are the participants (actors) in this process? 0 33.33 No changes were made to this node so identifying who interacts with the process is still

a problem.
9.Who is responsible for each node? 100 100 The testers matched easily the actors (due to the intuitive labels on the nodes). Without

labels the results would be much worse.

Concrete Syntax

Proposed BPTOriginal BPT

C
o

rr
ec

t
A

n
sw

er
 R

at
e

1.00

0.80

0.60

0.40

0.20

0.00

5

8

Page 1

Figure 10: TLX distribution
Concrete Syntax

Proposed BPTOriginal BPT

S
U

S
 S

co
re

100

80

60

40

20

0

Page 1

Figure 11: SUS distribution
Concrete Syntax

Proposed BPTOriginal BPT

N
A

S
A

 T
L

X
 S

co
re

100

80

60

40

20

0

Page 1

Figure 12: TLX distribution
Table 3: Descriptive statistics

Language N Mean Std. Dev. Skew. Kurt. S-W

Correct Original BPT 9 0.51 0.40 0.227 -1.739 0.085
Proposed BPT 9 0.89 0.24 -2.121 4.001 0.000

SUS Original BPT 16 42.25 11.72 -0.021 -0.67 0.896
Proposed BPT 9 64.78 10.02 0.213 -1.05 0.697

TLX Original BPT 16 36.5 14.47 0.421 -0.61 0.686
Proposed BPT 9 20.78 8.72 -0.118 -1.81 0.245

Table 4: Welch’s t-test scores
Orig
BPT
mean

Prop
BPT
mean

Diff
95%

Dif. CI
Lower

95%
Dif. CI
Upper

t df p-value

Corr 0.51 0.89 -0.38 -0.71 -0.04 -2.402 12.87 0.032
SUS 42.25 64.78 -22.53 -31.83 -13.22 -5.07 19.01 0.000
TLX 36.50 20.78 15.72 6.12 25.32 3.39 22.80 0.003

RQ2. Can participants unfamiliar with BPT design more
semantically transparent symbols for BPT than the origi-
nal? Yes. Asking participants unfamiliar with BPT to propose alter-
native representations for the BPT constructs has allowed obtaining
more semantically transparent alternatives to BPT. Both the stereo-
type and the prototype alternatives have achieved a significantly
better semantic transparency. These results reinforce others where
notations produced by novices consistently outperform those pro-
duced by experts, in terms of symbol recognizability [2, 32]. This
suggests that symbolization experiments such as ours are a viable
way of developing better concrete syntaxes. A relevant difference
from [2] is that instead of producing a PoN-powered alternative for
a new concrete syntax a priori, we proposed the improved BPT nota-
tion after analyzing the results from the symbolization experiments.
The proposed syntax was inspired by the alternatives previously
produced (particularly the prototype BPT), combining them it with

other concerns, such as the overall coherence of the concrete syntax
and how it relates to other existing DSLs in OutSystems.

RQ3. Which concrete syntax (original, stereotype, proto-
type, proposed) is more semantically transparent? The Proto-
type BPT is the alternative with the best semantic transparency.
However, its difference to the proposed BPT and stereotype BPT is
not statistically significant. The three alternatives are significantly
better than the baseline original BPT. Again, this is somewhat simi-
lar to what was observed in other evaluations (see section 6).

RQ4. Which concrete syntax (original, proposed) leads to
a better understandability of BPT models in the context of
interpretation tasks? The proposed BPT lead to more correct in-
terpretations in the model interpretation experiment. There were
noticeable improvements: understanding where a process starts;
whether and if a process fails; and, concerning the nodes finishing
process flows. The insights collected in this evaluation can be used
for further iterations in BPT, in particular for those details that
participants still struggled with (Table 2). More importantly, the ap-
proach itself is reusable for other languages. With some variations,
it has been applied to other languages (see section 6).

RQ5. Which concrete syntax (original, proposed) leads to
a better understandability of BPT models, as perceived by
practitioners, while performingmodel interpretation tasks?
The proposed BPT obtained a significantly higher SUS score, denot-
ing that the perceived usability has improved.

RQ6. Which concrete syntax (original, proposed) leads to
a lower cognitive effort, as perceived by practitioners, while
performingBPTmodel interpretation tasks?Consistentlywith
the perception of increased usability, the perceived cognitive effort
has significantly decreased with the proposed BPT.

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark H. Henriques et al.

5.2 Implications for practice
The method followed in this paper is applicable to other languages.
Indeed, we have partially done so elsewhere [22, 32]. As shown in
Table 1, symbols created by our participants were more transparent
than those created by language engineers for the original BPT. This
is consistent with findings in other contexts [2, 22, 32]. We intro-
duced an important variant. Rather than using students as subjects
[2, 22, 32], we had OutSystems professional developers as subjects.
They are experts in the target platform, although inexperienced
with BPT. This has facilitated the creation of the proposed BPT as a
visual language that is consistent with the rest of the OutSystems
platform. Having participants with the same profile as the intended
end users, but with a fresh look on the language concepts so they
were not influenced by the current syntax of the language being
evolved helped to achieve better results than those achieved with
“less informed” participants in the symbolization experiments [33].

The results of the usability experiments stress the importance of
having a one-to-one relationship between the concrete and seman-
tic constructs. This corroborates the Physics of Notations [23].

As expected, the TLX score decreases as the SUS score increases.
This suggests a negative correlation between language usability
and the perceived cognitive effort using it.

Our participants could not identify several constructs, in the orig-
inal BPT. This was one of the problems related to symbol overload
or deficit, reinforcing the need to have a one-to-one relationship
between the semantic constructs and the concrete syntax.

The changes introduced in the proposed BPT, when compared
to the prototype BPT, in order to preserve consistency with the
platform resulted in a minor, statistically insignificant, decrease
in transparency. The proposed BPT has still a mean hit rate above
the ISO threshold. This illustrates the importance of context in
language engineering (e.g. the colour choices for termination sym-
bols only make sense for the context of the OutSystems platform).
Understanding what works for the actual end users was key.
5.3 Threats to validity
We need to consider potential validity threats [35]. Population selec-
tion is a threat, as, due to resource constraints, all the participants
used in the usability experiments were members of OutSystems
(not part of the BPT development team). Ideally, there would also
be representatives of business managers, as they are also stake-
holders for BPT. Further research is required to assess the proposed
BPT with those stakeholders. Also, due to the strict time avail-
ability of the participants (as is common in these experiments),
the usability experiments were limited to three BPT diagrams of
varying complexity. While those diagrams were selected for being
as representative as possible of BPT, there is always the potential
for increasing the external validity of these results by performing
replications of this evaluation with different BPT diagrams.

6 RELATEDWORK
Moody et al. evaluated the i* concrete syntax using PoN and pro-
posed a new symbol set for it [24]. Caire et al. compared Moody’s
proposed concrete syntax with alternatives produced by novices (a
stereotype and a prototype concrete syntaxes) and the standard i*
concrete syntax [2]. We adapted Caire’s protocol. Instead of having
previously defined a PoN-informed concrete syntax for BPT, we

also used the concrete syntaxes proposed through a symbolization
experiment as input for the development of the proposed BPT.

PoN was used to evaluate and identify improvement opportu-
nities for several modelling languages, such as BPMN 2.0 [5], Use
Case Maps [4], WebML [6], and misuse cases [31]. In general, these
studies reached conclusions similar to those advanced by Moody
concerning the challenges in most visual notations, including UML,
from a PoN perspective [23].

Matulevičius et al. used interviews, models creation, and evalua-
tion of those models and the modelling language for assessing the
i* and KAOS modelling languages [17] and found clarity problems
in those languages semantics definition.

7 CONCLUSIONS AND FUTUREWORK
While running into maintenance costs, and having identified the
need for improving the usability of the commercial business process
modelling language (BPT) at OutSystems, we have designed and
put forward a systematic process to identify and fix usability issues.

We identified issues on syntactic and semantic constructs, and
proposed a new notation. After evolving BPT within OutSystem’s
development environment, we applied the evaluation process to
the proposed BPT and observed a significant increase in usability.

The comparison analysis between the original and the proposed
version of the BPT confirmed that the process is effective and that
the new notation has a higher usability rating. We could also con-
clude that: Semantic transparency has a large impact on usability;
users create more semantic transparent symbols than language
engineers (which goes in line with what Caire et al. concluded [2]);
it is extremely important to have a one-to-one relationship between
the concrete syntax and the semantic constructs.

To be generalizable, as future work, the evaluation process pro-
posed in this work can be expanded with further techniques and
also modified to apply to textual languages. The evaluation process
identifies issues with a language’s concrete and semantic constructs.
However, it only provides methods to improve the language’s con-
crete syntax. The process should be further expanded with tech-
niques that help language engineers design semantic constructs
from the ground up that answer the needs of the users while having
a high usability rating. This could be achieved with the addition of
techniques from Requirements Engineering, but further research
is required. The proposed usability evaluation process should also
make more use of the eye-tracking data. The current process only
uses the eye-tracker to manually revisit recordings of the usability
tests and to identify possible reasons for wrong answers. However,
there are several metrics that can be extracted from the eye-tracking
results that provide objective information about the tester (states
of confusion, being lost in the interface, etc.). This, added to the
SUS score provides a more accurate overview of the language’s us-
ability. During the analysis of the comparison between the original
BPT notation and the new one, we noted that there appears to be
a negative correlation between a language’s SUS and NASA TLX.
This should be further researched.

ACKNOWLEDGMENTS
The authors would like to thank NOVA LINCS Research Laboratory
(Grant: FCT/MCTES PEst UID/ CEC/04516/2013) and DSML4MAS
Project (Grant: FCT/MCTES TUBITAK/0008/2014).

Improving the Dev. Experience with Process Modelling Language MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

REFERENCES
[1] John Brooke. 1996. SUS-A quick and dirty usability scale. In Usability evaluation

in industry, Patrick W. Jordan, Bruce Thomas, Bernard A. Weerdmeester, and
Ian L. McClelland (Eds.). Taylor & Francis, London, Chapter 21, 189–194.

[2] Patrice Caire, Nicolas Genon, Patrick Heymans, and Daniel L Moody. 2013. Visual
notation design 2.0: Towards user comprehensible requirements engineering
notations. In 21st IEEE InternationalRequirements Engineering Conference (RE 2013).
IEEE, Rio de Janeiro, Brazil, 115–124. https://doi.org/10.1109/RE.2013.6636711

[3] Roger Dawson. 2012. Secrets of Power Problem Solving. Career Press, NJ, USA.
[4] Nicolas Genon, Daniel Amyot, and Patrick Heymans. 2010. Analysing the Cog-

nitive Effectiveness of the UCM Visual Notation. In International Workshop
on System Analysis and Modeling (SAM 2010), Frank Alexander Kraemer and
Peter Herrmann (Eds.). Springer, Berlin, Heidelberg, Oslo, Norway, 221–240.
https://doi.org/10.1007/978-3-642-21652-7_14

[5] Nicolas Genon, Patrick Heymans, and Daniel Amyot. 2011. Analysing the cogni-
tive effectiveness of the BPMN 2.0 visual notation. In Software Language Engi-
neering (SLE 2010), Brian Malloy, Steffen Staab, and Mark van den Brand (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 377–396. https://doi.org/10.1007/
978-3-642-19440-5_25

[6] David Granada, Juan Manuel Vara, Marco Brambilla, Verónica Bollati, and Es-
peranza Marcos. 2017. Analysing the Cognitive Effectiveness of the webml
Visual Notation. Software & Systems Modeling 16, 1 (2017), 195–227. https:
//doi.org/10.1007/s10270-014-0447-8

[7] Bruno Grácio. 2015. Agregado: Compilar Sistemas NoSQL na Plataforma OutSys-
tems. Master’s thesis. Faculdade de Ciências e Tecnologia da Universidade Nova
de Lisboa.

[8] Sandra G Hart. 2006. NASA-task load index (NASA-TLX); 20 years later. Proceed-
ings of the Human Factors and Ergonomics Society Annual Meeting 50, 9 (2006),
904–908. https://doi.org/10.1177/154193120605000909

[9] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. Advances in psychology
52 (1988), 139–183. https://doi.org/10.1016/S0166-4115(08)62386-9

[10] Red Hat. 2016. JBoss Developer. (2016). http://www.jboss.org/
[11] Henrique Henriques, Hugo Lourenço, Vasco Amaral, and Miguel Goulão. 2018.

Improving the Developer Experience with a Low-Code ProcessModelling Lan-
guage: Companion site. (2018). https://doi.org/10.5281/zenodo.1318719

[12] William C Howell and Alfred H Fuchs. 1968. Population stereotypy in code
design. Organizational Behavior and Human Performance 3, 3 (1968), 310–339.

[13] ISO. 2014. Graphical symbols – Test methods – Part 1: Method for testing compre-
hensibility. Standard. International Organization for Standardization, ISO/TC
145 Graphical symbols, Geneva, CH.

[14] Sheila Jones. 1983. Stereotypy in pictograms of abstract concepts. Ergonomics 26,
6 (1983), 605–611.

[15] Barbara Kitchenham, Lech Madeyski, Pearl Brereton, Stuart Charters, Shirley
Gibbs, and Amnart Pohthong. 2016. Robust Statistical Methods for Empirical
Software Engineering. Empirical Software Engineering 22, 2 (2016), 579–630.
https://doi.org/10.1007/s10664-016-9437-5

[16] A. Lima. 2013. OutSystems Platform - Architecture and Infrastructure
Overview. Technical Report. OutSystems. https://www.outsystems.com/home/
document-download/178/8/0/0

[17] Raimundas Matulevičius and Patrick Heymans. 2007. Comparing goal modelling
languages: An experiment. In International Working Conference on Requirements
Engineering: Foundation for Software Quality (REFSQ 2007). Springer, Berlin, Hei-
delberg, Trondheim, Norway, 18–32. https://doi.org/10.1007/978-3-540-73031-6_
2

[18] Microsoft. 2016. ASP.NET. (2016). http://www.asp.net/
[19] Microsoft. 2016. ISS. (2016). https://www.iis.net/
[20] Microsoft. 2016. SQL Server. (2016). http://www.microsoft.com/en-us/

server-cloud/products/sql-server-2016/
[21] Microsoft. 2016. Windows Server 2016. (2016). http://www.microsoft.com/

en-us/server-cloud/products/windows-server-2016/
[22] Tomás Miranda, Moharram Challenger, Baris Tekin Tezel, Ömer Faruk Alaca,

Vasco Amaral, Miguel Goulão, and Geylani Kardas. 2018. Improving the Usability
of aMASDSML. In 6th InternationalWorkshop on EngineeringMulti-Agent Systems
(EMAS 2018). Springer, Stockholm, Sweden, 16 pp.

[23] Daniel L Moody. 2009. The “physics” of notations: toward a scientific basis for
constructing visual notations in software engineering. Software Engineering, IEEE
Transactions on 35, 6 (2009), 756–779. https://doi.org/10.1109/TSE.2009.67

[24] Daniel L Moody, Patrick Heymans, and Raimundas Matulevičius. 2010. Visual
syntax does matter: improving the cognitive effectiveness of the i* visual notation.
Requirements Engineering 15, 2 (2010), 141–175.

[25] Joan C Nordbotten and Martha E Crosby. 1999. The effect of graphic style on
data model interpretation. Information Systems Journal 9, 2 (1999), 139–155.

[26] Oracle. 2015. Oracle WebLogic Server. (2015). http://www.oracle.com/
technetwork/middleware/weblogic/overview/index-085209.html

[27] Oracle. 2016. MySQL. (2016). https://www.mysql.com/
[28] Oracle. 2016. Oracle. (2016). http://www.oracle.com/index.html
[29] OutSystems. 2013. OutByNumbers - Benchmark Overview Report. Technical

Report. OutSystems. http://www.outsystems.com/res/OutbyNumbers-DataSheet
[30] Hasso Plattner, Christoph Meinel, and Larry Leifer. 2011. Design thinking:

Understand–Improve–Apply. Springer-Verlag Berlin Heidelberg, Germany. https:
//doi.org/10.1007/978-3-642-13757-0

[31] Faisal Saleh and Mohamed El-Attar. 2015. A scientific evaluation of the misuse
case diagrams visual syntax. Information and Software Technology 66 (2015),
73–96.

[32] Mafalda Santos, Catarina Gralha, Miguel Goulão, and João Araujo. 2018. Increas-
ing the Semantic Transparency of the KAOS Goal Model Concrete Syntax. In
37th International Conference on Conceptual Modeling (ER 2018). Springer, Xi’an,
China, 14 pp.

[33] Mafalda Santos, Catarina Gralha, Miguel Goulão, João Araujo, and Ana Moreira.
2018. On the Impact of Semantic Transparency on Understanding and Review-
ing Social Goal Models. In 26th IEEE International Conference on Requirements
Engineering (RE 2018). IEEE, Banff, Canada, 12 pp.

[34] UsabilityHub. 2018. UsabilityHub web site. https://usabilityhub.com/. (2018).
Accessed: 2018-04-27.

[35] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer-Verlag
Berlin Heidelberg, Germany. https://doi.org/10.1007/978-3-642-29044-2

[36] HJ Zwaga and T Boersema. 1983. Evaluation of a set of graphic symbols. Applied
Ergonomics 14, 1 (1983), 43–54.

https://doi.org/10.1109/RE.2013.6636711
https://doi.org/10.1007/978-3-642-21652-7_14
https://doi.org/10.1007/978-3-642-19440-5_25
https://doi.org/10.1007/978-3-642-19440-5_25
https://doi.org/10.1007/s10270-014-0447-8
https://doi.org/10.1007/s10270-014-0447-8
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1016/S0166-4115(08)62386-9
http://www.jboss.org/
https://doi.org/10.5281/zenodo.1318719
https://doi.org/10.1007/s10664-016-9437-5
https://www.outsystems.com/home/document-download/178/8/0/0
https://www.outsystems.com/home/document-download/178/8/0/0
https://doi.org/10.1007/978-3-540-73031-6_2
https://doi.org/10.1007/978-3-540-73031-6_2
http://www.asp.net/
https://www.iis.net/
http://www.microsoft.com/en-us/server-cloud/products/sql-server-2016/
http://www.microsoft.com/en-us/server-cloud/products/sql-server-2016/
http://www.microsoft.com/en-us/server-cloud/products/windows-server-2016/
http://www.microsoft.com/en-us/server-cloud/products/windows-server-2016/
https://doi.org/10.1109/TSE.2009.67
http://www.oracle.com/technetwork/middleware/weblogic/overview/index-085209.html
http://www.oracle.com/technetwork/middleware/weblogic/overview/index-085209.html
https://www.mysql.com/
http://www.oracle.com/index.html
http://www.outsystems.com/res/OutbyNumbers-DataSheet
https://doi.org/10.1007/978-3-642-13757-0
https://doi.org/10.1007/978-3-642-13757-0
https://usabilityhub.com/
https://doi.org/10.1007/978-3-642-29044-2

	Abstract
	1 Introduction
	2 Business Process Technology
	2.1 OutSystems Platform
	2.2 Current BPT concrete syntax

	3 BPT Evaluation
	3.1 Analysis of usage data from the OutSystem's platform
	3.2 Interviews with BPT users
	3.3 BPT analysis using the ``Physics of Notations''

	4 New BPT proposal
	4.1 Research questions
	4.2 Research design
	4.3 symbolization experiment
	4.4 Stereotyping analysis
	4.5 Prototyping experiment
	4.6 Proposed BPT
	4.7 Semantic transparency experiment
	4.8 Usability and cognitive effort comparison

	5 Discussion
	5.1 Evaluation of results
	5.2 Implications for practice
	5.3 Threats to validity

	6 Related work
	7 Conclusions and future work
	References

